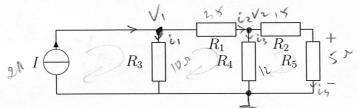
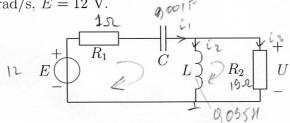
Konstantin, rykova tut. fi


SMG-8046 RF-electronics preparatory I

Small Exam 1, 19.09.10 at 9.15

Answer to three of the four questions. Each question gives maximum of 5 points.

- 1. (a) i. Assume that the voltage over R_5 is 1V. What is value of I then?
 - ii. Assume that I = 2A. Find voltage over R_5 . Determine also the voltages and currents of all the other resistors.


Let $R_1 = 2.5\Omega$, $R_2 = 15\Omega$, $R_3 = 10\Omega$, $R_4 = 12\Omega$, and $R_5 = 5\Omega$.

V2=VR2+VRS

- (b) Are following true or not. Include proper reasoning to your answer.
 - i. Any five vectors in \mathbb{R}^5 form a basis for \mathbb{R}^5 .
 - ii. A basis in a vector space is unique.
 - iii. If A is a 3×3 matrix and $\det(A)$, then the rows of A are linearly dependent vectors of \mathbb{R}^3 .
- 2. (a) Let us assume that space V has basis $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$. Let us also assume that for two linear transformations $T_1: V \to W$ and $T_2: V \to W$ holds that $T_1\mathbf{v}_i = T_2\mathbf{v}_i = \mathbf{w}_i$ for all $i = 1, 2, \dots, n$. Show that then for any vector $\mathbf{v} \in V$ holds that $T_1\mathbf{v} = T_2\mathbf{v}$.

(b) i. Find the voltage U. Let $R_1 = 1\Omega$, $R_2 = 19\Omega$, L = 0,095H, C = 0,001F, $\omega = 100 \text{ rad/s}$, E = 12 V.

U=19L90

- ii. Comment on your result, does it seem to be a bit unexpected?
- 3. (a) Determine rank and nullity of matrix \mathbf{A} .

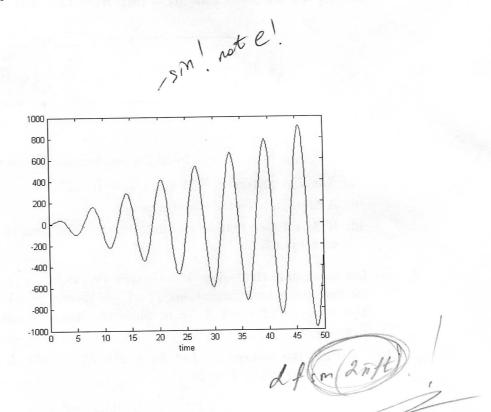
of matrix A.
$$A = \begin{bmatrix} 3 & 0 & 2 \\ -6 & 42 & 23 \\ 21 & -21 & 0 \end{bmatrix}$$
rank? = 2

multity = 1?

rank + multity = 1?

(b) Let $A \in \mathbb{R}^{m \times n}$ and let us define a transformation $T_A : \mathbb{R}^n \to \mathbb{R}^m$ as

$$T_A(\mathbf{x}) = A\mathbf{x}$$


where $\mathbf{x} \in \mathbb{R}^n$. Is T_A linear or not? Give a proper verification.

4. (a) Solve the initial value problem

$$y'' + 3y' - 10y = 0$$
, $y(0) = 3$, $y'(0) = -1$.

Show also that you have obtained linearly independent solution(s).

(b) Look at the picture below which is related to solution of a 2nd order differential equation. Based on the picture, estimate what happens when time increases further. How could you describe the system in question? Could you deduce and write down a possible equation that would characterize the solution?

