SGN-41007 Pattern Recognition and Machine Learning
Exam 12.12.2019
Heikki Huttunen

> Use of calculator is allowed.

> Use of other materials is not allowed.

> The exam questions need not be returned after the exam.
> You may answer in English or Finnish.

1. Are the following statements true or false? No need to justify your answer, just T or F.
Correct answer: T pts, wrong answer: —J pts, no answer 0 pts.

(a) Maximum likelihood estimators are unbiased.

(b) Least squares estimator minimizes the squared distance between the data and the
model.

(c) Mobilenets were the first to introduce a shortcut (residual) connection between layers.

(d) The number of support vectors of a support vector machine equals the total number
of samples.

(e) The LDA maximizes the within-class distance of samples in each class.

(f) Cross-validation is used for model accuracy evaluation.

2. Consider the model
x[n] = Aexp(—n) sin(6n) + wn], R==0;Ty...; N =1,

where w[n] ~ N'(0, ?) and 8 is a known real number. In other words, we assume that our
measurement is a damped sinusoid at known frequency and phase and want to estimate
the amplitude A. Derive the maximum likelihood estimator of A.

3. Consider the Keras model defined in Listing 1. Inputs are 224 x 224 color images from 17
categories.

(a) Compute the number of parameters for each layer, and their total number over all
layers.

(b) Compute the number of multiplications required on the first convolutional layer.

4. In this task, you will design both an unregularized and a regularized LDA classifier.

(a) Compute the LDA weight vector for
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(b) Compute the regularized LDA with A = 100. You may use the Wikipedia pages at the
end of the exam paper.




Prediction True label

Sample 1 08 1
Sample 2 0.5 1
Sample 3 0.6 0
Sample 4 0.1 0

Table 1: Results on test data for question 5a.

Laver (type) Cutput Shape Param #

conv2d 1 (Conv2D) (None, 224, 294, 32)

max_poolingZd (MaxPooling2D) (None, 112, 112, 32)

conv2d 2 {Conv2D) {None, 112, 112, 32)

max_pooling2d_1 (MaxPooling2 (None, 56, 56, 32)

conv2d 3 {Conv2D) (None, 56, 56, 32)

max_poolingZd_Z (MaxPooling2 (None, 28, 28, 32)

conv2d 4 {Conv2D) (None, 28, 28, 32)

max_poolingZd_3 {(MaxPooling2 (None, 14, 14, 32)

flatten (Flatten) (None, 6272)

dense (Dense) (None, 17)

Total params:
Trainable par

Non-trainable params: 0

Figure 1: Model structure of Question 3.

5. (a) A random forest classifier is trained on training data set and the predict_proba
method is applied on the test data of Table 1. Draw the receiver operating character-
istic curve. What is the Area Under Curve (AUC) score?

(b) Draw the precision recall curve. What is the Area Under PR Curve (AUPRC) score?



Related Wikipedia pages

Ancther complication in applying LDA and Fisher's discriminant to real data occurs when the number of

measurements of each sample (i.e., the dimensionalily of each data veclor) exceeds the number of

samples in each class Pl In this case, the covariance estimates do not have full rank, and so cannot be
| inverted. There are a number of ways to deal with this. One is to use a pseudo inverse instead of the
usual malrix inverse in the above formulae. However, betler numenic stability may be achieved by first
projecting the problem onto the subspace spanned by 3, 1221 Another strategy to deal vith small

The terms Fisher's linear discrimnant and LDA are often used interchangeably, although Fisher's original article!! actually
describes a sightly dilferent discnminant, which does not make scme of the assumptions of LDA such as normally
distnbuted classes or equal class covanances

Suppose two classes of observations have means jiy, ji; and covariances To, T;. Then the fnear combination of
featuces i - T #i have means @ - ji; and variances @7 5,0 for i = 0, 1. Fisher defned e separation beteeen these
two distributions 1o be the ratio of the variance betwesn the classes 10 the varance winn the classes’

sample size is to use a shri it of the matrix, which can be expressed
mathematically as

T= 1=+ A
where 1 is the identity matrix, and ) is the intensity or This leads to
the of 5 . psist? or shii o sis 1241
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This measute is, In scme sense, a measure of the signal-to-nose ratio for the class iabeling i can be shoan that the
maGmun Sepaation oICwrs when
@ (B 4+ £1) " (i = fiy)
When the assumpticns of LDA are sa¥sfied. the above equation is equivaient W LOR.
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Inversion of 2 x 2 matrices [edi |
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The cofacfor equation listed above yields the following resuit for2 < 2
matrices. Inversion of these matrices can be done as follows (¥

T ad—be|—c a

This is possible because 1/{ad — &c) is the reciprocal of the determinant
of the matrix in question, and the same strategy could be used for other

Tikhanov regularization. nameid for Andrey Tikhonov, is @ mefied of reguitanzation of #l-posed problems Alsc
moan as ridge regression ¥ is particuiany usetd to mitgate fe protiem of multcolinearty i inear
regression, which commonly CLcurs in models with large sumbers of parameters I in general e methed
provides improved efficiency m protiems m for 3 ioferable amount of bias {see
bias-variance tradeotf) &1

In the Simpiest case, the problem of a near-singular moment matrix (X X)) is aftiated by adging positve
elements {o the diagonals Tnewuahcalbetmwmwdbyansmgatmsvmzﬂf = ciothe least
squares probiem, such at

it (= X8)"(y - X8) + M8T8 - ¢)

d —b

where A 1s the Lagrange multipier of the constraint. The minumazer of the probéem is Te sanple rigge estimator
B =(XTX+ 21Xy
where 1 is the identity matrix and the ridge parameter )\ Seves as me positve constant shiftng M2 gagonas P

view T as a function of I, the AUC can be rewritten as foliows.
1
ave= [ nm)an,
(]
1
= [ P > PR ) = e
P BF(,
= [ Pt > P v =1- T e
1
= [ Pty > t15(x) = 1] PIp) = i) = 0}
1
= [ Pl > ) () = () = 1) = 0]
= Pjp(x) > p(x) | y(x) = 1&{x’) = 0.
where we used the fact that the probability density function
Plp(x) =t]y(x') = 0] = f(¢)
is the derivative with respect to £ of the cumulative distribution function
Plp(x) < t|y(x') =0]=1- F(t).
Se, given a randomly chosen observation x belanging {o ciass 1, and a randomly chosen
observation X’ belonging to class 0, the AUC is the probability that the evaluated

classification algorithm will assign a higher score to X than to X/, L.e., the conditional
probability of 5(x) > p(xX’).

matrix sizes. thereby decreasing the condition number of the mement mazic A mare genaral apprach to Tkhoaoy
regularization is QiSCussed beiow.
The ROC curve simpiy plots T'(L) against F(2) while varying £ from 010 1. Thus, if we ROC space ect]

The centingency table can derive several evaluation "metrics” (see infobox). To draw a ROC curve, cniy the true positive
rate (TPR) and false positive rate (FPR) are needad (as functions of some classifier parameter). The TPR defines how
many carrect positive results occur among all positive samples available during the test. FPR, on the other hand, defines
how many incomect positive resuilts occur amang all negative samples available during the test.

A ROC space is defined by FPR and TPR as x and y axes respectively, which depicts relative trade-offs between true
positive (benefits) and false positive (costs). Since TPR is equivalent to sensitivity and FPR is equal to 1 - specificity, the

ROC graph is called the ivity vs (1 - plot. Each resut or instance of a confusion
matrix represents cne point in the ROC space.
For degree-d poiynomiais. the polynomial kemet is defined as®l oy

K(z,y) = (=Ty+e)*
where xand ) are vectors in the inguf 55ace. | e, veciors of features computed rom baning oF texk sangies and ¢ > 0 1s 3 Yes parameter rading
off the M of highee-order v terms in the When ¢ =0, e kemel is called homogeneous (A turtner
iy oy parameter a1

As aremal K comesponds 1o an inner product In 3 featwa space based on Some mappng @

K(z,9) = (¢(=), p(u))
The nature of 0 can be seen from an evample Let d'= 2, sowe get the special case of the quatane kamal Afier using e muitinomial theorem
(twca—ine cutrmost appication is the binomial theorem) and regroupng

are) =5 60+ B30 B (Vi) + 35 (V) (V) 2

From this it fodows that the feature map is given by.
@) = (23, o, T3 VIZnZuctse ooy VEZRTL VEER1 Tacdy oy VEERa1 1y ooy VEZ2Z1, VECTn, oo VERY €)

K(z,v) =
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