MATH.APP 320

Optimization Methods Exam, 11.12.2019 Henri Hansen

Please answer four out of the following five questions, on a separate paper. Note that there
are two pages in the exam. No books. non-programmable calculators are allowed.
A Collection of Formulas will be handed. Kaavakokoelma jaetaan.

1. Consider the optimization problem:
min f(z,y) = 2* +¢°

s.t.
2+ y-2*<1
(a) Is the feasible set convex?
(b) Is the cost-function convex in the feasible region?
(¢) You can deduce the optimum of this problem relatively easily. Demonstrate that
it is a KKT-point and check the constraint qualifications.
2. Assume that we have the following linear problem:

minclz

s.t.
Az <b
x>0
(a) Explain how this is transformed so that the constraint becomes an equality con-
straint.

(b) Suppose that we wish to use the Simplex algorithm. To do so, we need one basic
feasible solution to the LP. Explain how to find one, assuming b above contains
only positive values.

(c) Consider the reduced cost &y (formula given in the formula sheet). Show (using
algebra), that its component i is equal to the change in the cost function if we
increase the value of the null-variable x; by one.

3. Consider the unconstrained problem
min f(z,y) = (1 — z)? + 10(y — 22)?

(a) Find the minimum of this function analytically. (Hint: It is not hard, if you really
look at when it can be minimum. Or solve for the zero of the gradient, but that
is going to be hard.

(b) Consider finding the minimum using one of the methods. Start from any point
(other than the optimum) and calculate one iteration. If you use the gradient
method, be sure to formulate the minimization problem solving the step length.
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(¢) Demonstrate that the function is not convex. (By any means you like.)

4. Let f,g: X — R be two strictly convex functions. Which of the following claims hold?
Prove or disprove (i.e., give an example where the claim is false)
(a) The function min{f(z), g(z)} is convex.
(b) The set f(z) = b is convex for every b € R.

(c) If f is continuosly differentiable and lim f(z) = co Then f has a unique mini-

[|z||—o0
mum.
5. Suppose we have a constraint problem
min 2%y?
s.t.
LEQ _ y2 — 4

(a) Formulate the KKT-conditions for this problem.

(b) solve the problem either by solving the KKT-equation or by using Lagrange mul-
tipliers. (Hint: it’s not too hard, consider the factors)

(c) What is the minimum of the function?
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Algorithm direction line length Update rule
Gradient Descent -V f(xx) ming f(zy + tdy,) | Tre1 = T + tdy,
Newton Method — " (zx) "V f (z1) 1 Tyt + 2k — [ (2k) "V f(zk)
Quasi-Newton —H, 'V f(x) ming f(zy + tdy) | Trr1 = T + tdy,
Conjugate Gradient | dy = —V f(z() T = [‘J{Vé((% g1 = Ty + trdy
A1 = =V f(Trr1) + Brdy Br = vf(xk“)7[(vvf(fkkf£f|)_vf(zk))

1. The Subset K C X of a vector space X is convez if and only if, for all 2,y € K and
Ae 0,1, dz+ (1 - Ny € K.

2. Let K be a convex set. A function f: K — R is convez if and only if for all z,y € K
and A € [0,1], f(Az + (1 — N)y) < Af(z) + (1= N)f(y).

3. Let K be a convex set. A differentiable function f : K — R is pseudoconvez if and
only if for all z,y € K, if Vf(z)- (y —z) > 0 then f(y) > f(z).

4. Let K be a convex set. A function f : K — R is quasiconvesr if and only if for all
z,y € K and A € [0,1], f(Az + (1 — A)y) < max{f(z), f(y)}

Consider the optimization problem:
min f(z)
s.t.
9i(z) <0 wherei=1,...,m
hij(z) =0 where j=1,...,p
where f: X - R and g;: X - R h; : X — R are functions.

1. The Karush-Kuhn-Tucker Conditions are satisfied at point z* € X (KKT-point) if and
only if there exists u; > 0 and A; € R such that

p

Vi(z*) + Z/,Lngi(a:*) + Z Al =10

=1
pigi(z*) =0, foralli=1,...,m
gi(2") <0and hj(z*) =0foralli=1,..., mand j=1,...,p
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Theorem: (Regarding constraint qualifications). If * is feasible, minimum point, then it
is a KKT-point, provided one of the following hold:

1. The functions g; are convex, the functions h; are affine (linear) and there exists an
interior point Z, i.e., such that g(2) < 0 and h(Z) = 0.

2. The gradients Vg;(z*) and Vh;(z*) are linearly independent, for every i such that
gle*] =0.

(If some point does not satisfy the second qualification, it might be a minimum even if it is

not a KKT point; if the first holds for the problem, it should not have points that do not

satisfy the qualification)

Consider the LP-problem

min ¢’z

s.t.
Az =0

z >0

1. If A= [B N] and z = [z] 2T]7 where z,, = 0 and z, > 0, then we say that z is a basic

n

feasible solution and B is a basis of the problem

2. Given a basis B (ie. A = [B NJ]) and basic feasible solution z = [zf 2T]7 where
xp > 0, the reduced cost associated with B is

i = e —ca BN
where ¢ = [¢} c&]*.

3. The dual of the problem is

max bl u
s.t.
ATu<e
y free
Let
A= @11 A12
Qo1 Q22
Then

=L 1 Qg2 —Q12
detA \—ag1 ann



