Gegandelp Slinger magnetic Systems

ELT-41736 Analysis of Electromagnetic Systems Small Exam II 02.12.2013 Answer to all questions. Jari Kangas

- 1. (a) Describe the laws that govern magnetostatics in free space. Define also briefly the quantities used.
  - (b) How are the laws changed if we consider domain that is not free space? (Aim to give detailed answer, i.e., complete set of conditions inherent in the case.)
  - (c) In the electrostatic case we introduced so called electric scalar potential. Could we use in magnetostatics scalar potential? If yes/no, try to give a thorough reasoning.

(6 p. in total)

- 2. (a) In electromagnetic motors, for instance, so called laminated structures are used (see the black board).
  - i. Explain in which kind of cases such structures are needed. Reason why such structures are useful, use suitable EM laws to support your reasoning.
  - ii. Reason also suitable direction of the lamination with respect to relevant EM quantities.
  - (b) Show that if  $\mathbf{F}(\mathbf{r}) = \mathbf{A}e^{j\boldsymbol{\kappa}\cdot\mathbf{r}}$  (where **A** is constant vector and  $j^2 = -1$ ),

$$\nabla \cdot \mathbf{F} = j\boldsymbol{\kappa} \cdot \mathbf{F}$$
 and  $\nabla \times \mathbf{F} = j\boldsymbol{\kappa} \times \mathbf{F}$ .

(5 p. in total)

- 3. (a) Consider solution to an electromagnetic wave problem. Let us suppose two candidates for electric flux density  $\mathbf{D_1}$  and  $\mathbf{D_2}$  for which holds that  $\nabla \cdot (\mathbf{D_1} \mathbf{D_2}) = 0$ . Does this mean that  $\mathbf{D_1} = \mathbf{D_2}$ ? If no, how are they related to each other?
  - (b) In certain cases electric potential due to charges is given as

$$\phi(\mathbf{r},t) = \frac{1}{4\pi\epsilon} \int_{V'} \frac{\rho(\mathbf{r}',t-\frac{|\mathbf{r}-\mathbf{r}'|}{c})}{|\mathbf{r}-\mathbf{r}'|} \ dV'.$$

Explain what is special in this expression and how to interpret it. Consider also fundamental assumptions underlying in basic circuit analysis; how could you relate the interpretation to them.

(4 p. in total)

etz

es3 183 es3