DEE-53117 Solar Power Systems

Examination, 6.10.2015

Answers to each question 1, 2, 3 and 4 should fit into one page of a common writing paper.

- 1. a) What is the origin of the parasitic series resistance in a PV module and how does it affect to the *I-V* curve of the module?
 - b) What is the equivalent interception surface (lightning collection area) of a 20 m high flat roof building with a rectangle basal area of 100 m times 40 m standing on an open flat field, when a sight line of slope 1:3 is applied?
- 2. Define the following quantities, concepts and phenomena (with one or two sentences).
 - a) Fill factor.
 - b) Depletion region.
 - c) Hot spot.
 - d) One-diode model.
- 3. a) How does the maximum power point voltage and current of a silicon PV cell depend on the received irradiance and cell temperature? What is the reason for the behaviour?
 - b) Explain the main differences of light absorption in direct and indirect band gap semiconductor materials. How do the differences affect to the light absorption coefficients of these semiconductors?
- 4. Two strings of twenty series connected silicon PV cells have short circuit currents of 2.0 A and 4.0 A.
 - a) Draw the current-voltage and power-voltage curves of the two PV strings.
 - b) Draw the current-voltage and power-voltage curves of a PV system, when the two PV strings are connected in parallel.
 - c) Draw the current-voltage and power-voltage curves of a PV system, when the two PV strings are connected in series.
 - d) Draw the current-voltage and power-voltage curves of a PV system, when the two PV strings are connected in series and each string is protected with a bypass diode connected in parallel with it.