Tampere University of Technology

Electrical Engineering

Tuomas Messo

Use of own programmable calculator is allowed.

Problem 1 (max 8 points)

Power stage of a voltage-fed inverter with dq-domain output-current control is as shown in Figure 1.

- a) Develop the inverter average model in dq-domain at open-loop, $\left\langle \langle i_{\rm in} \rangle = \frac{3}{2} d_{\rm d} \langle i_{\rm Ld} \rangle + \frac{3}{2} d_{\rm q} \langle i_{\rm Lq} \rangle \right\rangle$.
- b) Draw the equivalent linear circuit in dq-domain (DC input port and two AC output ports).
- c) How do you have to modify the duty ratio d and q-components (by adding x_d and x_q) to make the inverter output currents independent of the grid voltage d and q-components? I.e., how to implement grid voltage feedforward?
- d) How do you realize decoupling of the current d and q-components? Use the average model to obtain necessary control laws / scaling coefficients.

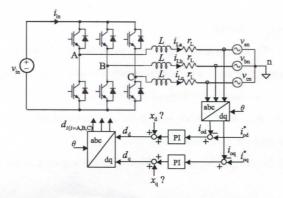


Figure 1: Voltage-fed inverter with output-current control.

Problem 2 (max 4 points)

Instantaneous apparent power can be defined as the product of voltage space-vector and the complex-conjugate of current space-vector in the stationary reference frame as in (1).

- a) Define real and imaginary power in the synchronous reference frame, i.e., in the dq-domain. The space vector is assumed to rotate at the fundamental grid frequency $\omega_{\mbox{\tiny S}}$.
- b) Explain (based on the previous result), how the real and imaginary power produced by three-phase inverter can be controlled independently.

$$\mathbf{s} = \mathbf{v}^{\alpha\beta} \cdot \left(\mathbf{i}^{\alpha\beta} \right)^* \tag{1}$$

Problem 3 (max 6 points)

Control block diagram of a phase-locked-loop is as shown in Figure 2. The feedforward term ω_{ff} is a constant which improves start-up. The Park's transformation can be linearized as $\hat{v}_{q}' = \hat{v}_{q} - V_{d}\hat{\theta}$ where \hat{v}_{q} denotes the ideal grid voltage q-component.

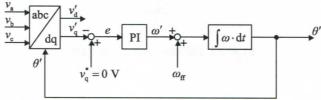


Figure 2: Phase-locked-loop.

DEE-34206 Dynamics and Control of Grid-Connected Converters

Tampere University of Technology

Electrical Engineering

Tuomas Messo

Use of own programmable calculator is allowed.

- a) Draw the linearized control block diagram and define control loop gain of the PLL.
- b) Solve transfer function from the reference input \hat{v}_a^* to the controlled variable \hat{v}_a' in dq-domain.
- c) The transfer function from reference to the controlled variable can be written as a second-order system as in (2). Find out the damping ratio ξ and natural frequency ω_n in terms of controller parameters. You can assume that the controller transfer function is as given in (3).

$$G = \left(2\xi\omega_{\rm n}s + \omega_{\rm n}^2\right) / \left(s^2 + 2\xi\omega_{\rm n}s + \omega_{\rm n}^2\right)$$
 (2)

$$G_{c} = \frac{(-1) \cdot K(s/\omega_{z} + 1)}{s} \tag{3}$$

Problem 4 (max 6 points)

Give short answers to following questions.

- 1. What is the main benefit of implementing current control in dq-domain?
- 2. How can one implement current control of three-phase inverter outside dq-domain?
- 3. Why do you need to solve steady-state operating point?
- 4. Can you stabilize converter which has a RHP-pole in its control dynamics? How?
- 5. Give short definition of a cascaded control scheme?
- 6. How should the PLL bandwidth be selected when grid voltages are unbalanced?

Problem 5 (max 6 points)

Figure 3 shows current control loop gain with a simple unity-gain integrator as the controller (4). Comment on the stability and expected performance of the current control. Propose a controller transfer function to increase stability margins and explain how to select controller parameters (poles/zeros/gains). The control loop gain should have a crossover frequency around few kilohertz. You don't need to give specific values for controller parameters. You may sketch bode diagrams to justify the tuning process.

$$L_{\text{out}} = G_{\text{cod-o}} \cdot \frac{1}{s} \tag{4}$$

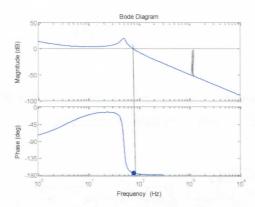


Figure 3: Current control loop gain.