Tampere University of Technology DEE-34106 Converter dynamics and EMC 19.5. 2015

Electrical Engineering Teuvo Suntio

Programmable calculator allowed

5 questions/ á 6 pts

- Question 1. Explain shortly the following concepts related to the dynamics of a switched-mode converter (Note: Repeating the English words does not suffice): a) SSA method, b) two-port model, c) state space, d) PI, e) PCM-control, and f) DDR-control. (á 1pt)
- Question 2. Fig. 1 shows an electrical equivalent circuit representing the dynamics of a certain class of switched-mode converters. Define symbolically based on Fig. 1 a) $Z_{\text{o-o}}$, b) $Z_{\text{in-o}}$, and c) $T_{\text{oi-o}}$ (Each subquestion gives 2 pts).

Fig. 1.

Question 3. A control-block diagram representing a generalized closed-loop input dynamics of an input-side-controlled converter is given in Fig. 2. a) Define the equation for the feedback-loop gain $(L_{\rm in})$ using the symbols of Fig. 2, b) Define symbolically the closed-loop $\hat{y}_{\rm in}/\hat{u}_{\rm in}$, and c) Define symbolically $\hat{y}_{\rm in}/\hat{u}_{\rm r-in}$. (Each subquestion gives 2 pts)

Fig. 2.

- Question 4. The frequency responses of the control-to-output-voltage transfer function $(G_{\text{co-o}})$ and the output-voltage-feedback loop gain (L_{out}) of a buck converter are shown in Fig. 3a, and Fig. 3b, respectively.
 - a) Compute the approximate value of the output capacitor of the converter when its output inductor is $400 \, \mu H$? (2pts)
 - b) Evaluate the feasibility of the control design based on Fig. 3b: Why it is /Why it is not? (2pts)
 - c) What is the type of the used controller? I, P, PI, PID? Justify your answer! (2pts).

Fig. 3a.

Fig. 3b.

Question 5. The measured open-loop $(Z_{\text{in-o}})$, closed-loop $(Z_{\text{in-c}})$, and short-circuit $(Z_{\text{in-sco}})$ input impedances of the output-voltage-feedback-controlled converter as well as the output impedance (Z_{s}) of the input EMI filter are given in Fig. 4. Analyze the effect of the input filter on a) the stability of the converter, b) load-transient responses, and c) voltage-loop gain. Without the input filter, the converter is stable and the transient performance is excellent. Justify your thoughts based on Fig. 4 and the underlying formulas. The value of each sub-question is 2 points.

Tampere University of Technology DEE-34106 Converter dynamics and EMC 19.5. 2015 Electrical Engineering

Teuvo Suntio

Programmable calculator allowed

5 questions/ á 6 pts

$$G_{\rm co-o}^{\rm S} = \frac{1 + Z_{\rm s} \; / \; Z_{\rm in-o}}{1 + Z_{\rm s} \; / \; Z_{\rm in-o}} G_{\rm co-o} \qquad Z_{\rm o-c}^{\rm S} = \frac{1 + Z_{\rm s} \; / \; Z_{\rm in-sco}}{1 + Z_{\rm s} \; / \; Z_{\rm in-c}} Z_{\rm o-c} \qquad Y_{\rm in-c} = \frac{Y_{\rm in-o}}{1 + L_{\rm out}} + \frac{L_{\rm out}}{1 + L_{\rm out}} Y_{\rm in-o} = \frac{Y_{\rm in-o}}{1 + L_{\rm out}} Y_{\rm in-o} = \frac{Y_{\rm$$

Fig. 4