Tampere University of Technology DEE-33116 Power Electronics Converters 22.3.2017 Electrical Engineering

Jenni Rekola

Programmable calculator allowed Answers in English or in Finnish allowed 5 questions/ á 6 p

1. The grid phase-voltage and grid current are shown in Fig. 1

- a) What is the rectifier topology used in the system according to the grid current waveform shown in Fig. 1?
- b) Draw the rectifier topology used in the system according to the grid current waveform shown in Fig. 1
- c) Sketch the waveform of the output DC voltage as a function of time
- d) Calculate the average output voltage value
- e) What should be the maximum peak repetitive reverse voltage rating of the power semiconductor switching components used in the rectifier if 1.5 safety margin is used?
- f) What is the lowest frequency of the produced grid current harmonic component?

Fig. 1. Measured grid phase voltage (amplitude *100) and grid current (amplitude*10)

2. Ideal boost converter is shown in Fig. 2.

Input voltage is 12V and output voltage is 48V. The power is 500W. Assume that the capacitor voltage ripple is negligible.

- a) What is the average capacitor current?
- b) What is the average diode current?
- c) Sketch the diode current waveform
- d) What is the average transistor current?
- e) What is the average input current?
- f) The switching frequency is 10 kHz. How large inductor is needed to achieve 20 % peak-to-peak ripple in the inductor current?

Electrical Engineering

Jenni Rekola

Programmable calculator allowed Answers in English or in Finnish allowed 5 questions/ á 6 p

Fig 2. Ideal boost converter

3. Compare the characteristics of thyristor (SCR), MOSFET and IGBT

- a) Which of these have the highest switching frequency?
- b) Which of these have the highest current capability?
- c) Which of these are used in conventional welding machines (hitsauskone in Finnish)?
- d) Which of these are used in mobile phone chargers?
- e) Which of these needs antiparallel connected diode? Why?
- f) Which of these is presented in Fig. 3.?

Fig 3. Transistor

4. The single-phase inverter is used in the solar power system shown in Fig. 4a and the output voltage waveform is shown in Fig. 4b.

- a) What is the inverter bridge topology used in the solar power system according to the output voltage waveform? Draw the inverter bridge.
- b) What is the switching frequency of the transistors?
- c) How large DC voltage is produced by the solar power plant?
- d) What is the maximum output voltage rms value if conventional sinusoidal PWM modulation method is used in linear modulation region?
- e) What should be the PWM modulation index if the load is designed to be grid connected (230 Vrms) and the DC voltage is the same as in Fig. 4b?
- f) What is the lowest frequency of the produced output current harmonic component?

Electrical Engineering
Jenni Rekola

Programmable calculator allowed Answers in English or in Finnish allowed 5 questions/ á 6 p

Fig. 4. a) Solar power system and b) inverter bridge voltage v_{bridge}

5. Space-vector modulation

Three-phase inverter is shown in Fig. 5a. Suppose that the DC voltage is 560V.

- a) What is the length of the active vectors (Fig. 5b)? (1p)
- b) The instantaneous reference voltage of the inverter is $v^{ref} = 150 \text{ V} \cdot e^{j\frac{3\pi}{5}}$. Present the switching sequence required to produce the reference voltage (vectors shown in Fig. 5b). The conventional space-vector pulse-width modulation SV-PWM method is used. (2p)
- c) What is the maximum output voltage with the analyzed inverter in the linear modulation region when SV-PWM modulation method is used? (1p)
- d) What are the advantages of SV-PWM modulation method compared to conventional sinusoidal PWM modulation method? (2p)

The complex space vector of three-phase variable is defined as

$$\underline{x} = \frac{2}{3} \left(x_a + \underline{a} x_b + \underline{a}^2 x_c \right), \quad \text{where} \quad \underline{a} = e^{j\frac{2\pi}{3}}.$$
 (1)

Tampere University of Technology

DEE-33116 Power Electronics Converters

22.3.2017

Electrical Engineering Jenni Rekola

Programmable calculator allowed Answers in English or in Finnish allowed 5 questions/ á 6 p

Fig. 5. a) Three-phase inverter

b) vector diagram