- 1. Let us assume that the resistance of the studied transmission line is 0Ω . Theoretical maximum power flow through the line is achieved when the angle difference between line ends is $\delta = 90^{\circ}$ and voltage in both ends is constant 1.0 pu. Maximum power flow is $P_{max} = 1.0$ pu.
 - a) Prove that reactive power losses in the line are 2.0 pu.
 - b) Prove that voltage in the middle of line is $\frac{\sqrt{2}}{2}$ pu.
- 2. Figure 1 represents 300 km long transmission line where voltage on both ends is $U_{1v}=U_{2v}=400 \text{ kV}$ and power flow through line is P=700 MW. Calculate how large series capacitor needs to be connected in the middle of the line in order to have $Q_1=Q_2=0$. Parameters of the line are $x=0.33 \Omega/\text{km}$, $b=3.57 \mu\text{S/km}$.

Figure 1.

3. Generator produces P = 80 MW active- and Q = 0 reactive power. Connection point voltage on the high voltage side of the transformer is U = 115 kV and network short-circuit power is $S_k = 1000$ MVA when voltage is 115 kV. How much the connection point voltage will change if a reactor ($U_n = 120$ kV, $Q_n = 60$ Mvar) is connected to same point?

Figure 2.

- 4. A Generator (300 MVA, 23 kV) is feeding power through a transformer (330 MVA, 23/230 kV, Δ-Y connected, taps on Δ-side, leakage reactance 11 %) to a load (240 MVA, power factor 0.9_{ind.,} 230 kV). The generator is maintaining the voltage on the high voltage side of the transformer at nominal.
 - a) Determine generator active and reactive power when transformer ratio is $1:1\angle 30^{\circ}$
 - b) Determine generator active and reactive power when transformer ratio is 1:1.05∠30°